
Container-based Service Chaining:
a Performance Perspective

Sergio Livi, Quentin Jacquemart, Dino Lopez Pacheco, and Guillaume Urvoy-Keller
Université Côte d’Azur, CNRS, I3S, France
{livi, jacquema, lopezpac, urvoy}@i3s.unice.fr

Abstract—Middleboxes, which implement specific network ser-
vice functions – e.g. firewalls, load balancers, NATs – have
traditionally been deployed as hardware appliances, thereby
imposing significant constraints on network operators, who must
ensure that the traffic is effectively routed to the appropriate
set of middleboxes, following the right order. Being hardware-
based, these boxes offer limited upgrade capabilities, i.e. minor
tweaks for performance tuning. This problem becomes particu-
larly significant in multi-tenant data centers where each tenant
requires their own set of network service functions. A recent
trend is to virtualize these middleboxes and turn them into so-
called Virtualized Networks Functions (VNFs) that can be chained
to offer the appropriate services to each tenant.

When the VNFs are implemented as full-fledged virtual ma-
chines (VMs), a non-negligible overhead is added due to the
kernel of each VM, and it is even more considerable when scaled
up for a whole data center. Considering the industry’s direction
towards containerization technologies, e.g. Docker, we study the
case of VNFs implemented as lightweight Linux containers. We
seek to understand how performance evolves as a function of
the length of chains of various services; and also of different
configuration set-up, for example containers directly connected
together or through Open vSwitch switches.

I. INTRODUCTION

The network infrastructure is composed of different kinds
of equipment, some of which, known as middleboxes, are
responsible for network services. These services consist of one
or more functions, each of which is responsible for processing
packets [1]. Ubiquitous examples of such network services are
firewalls, deep packet inspection devices, application acceler-
ators, NATs, etc.

These functions are often implemented as specialized hard-
ware. Physical cables force the packets through rigid chains of
services that manipulate data flows; these chains are statically
defined at service deployment. The main advantage of this
approach is that it guarantees a good quality of service. The
price to pay is limited flexibility, along with tedious network
design and long deployment times.

Instead of using specifically designed hardware, a rela-
tively new technique called Network Function Virtualization
(NFV) suggests to set up the services as virtual appliances
on commodity hardware. The services, named Virtualized
Network Functions (VNFs), are then implemented completely
as software, enabling fast deployment cycles. A number of use
cases for NFV are described in [2].

NFV brings flexibility, elasticity and easy configuration
to middleboxes. For example, services can be easily moved
around, and chains of services can be modified on the fly. In

multi-tenant data centers, it is even possible to use dynamic
service chaining in order to provide a personalized set of
services for each customer [3]. This is particularly important in
cloud environments, where numerous Virtual Machines (VMs)
need to communicate through private networks. These VMs
may live on one or more (shared) physical nodes, and NFV
can be used to let customers define their own infrastructure.

Multiple virtualization techniques are available to sup-
port VNFs. In particular, with hypervisor-based solutions,
e.g. VMware, the host Operating System (OS) (or a part of
it) manages the access of the VMs to physical resources by
rewriting a part of the machine code of the guest OS, while the
rest of the code runs unmodified. As a general rule, the guests
share the host’s CPU architecture. With container-based solu-
tions, e.g. Docker [4], everything happens directly in the host
operating system: its kernel manages the isolation between
the environments by only granting the guest processes access
to a limited number of resources. As a result, all containers
share the same host kernel, thereby forcefully running a similar
operating system.

Because containers share the host OS’s kernel, running a
VNF from within a container induces a smaller overhead
than running the same VNF from within a full-fledged virtual
machine, as the VM needs to run its own kernel in the
virtual environment. When considering the large number of
VNFs required in cloud environments, running them from
VMs instead of containers implies that a significant amount
of energy and processing power is wasted on running guest
kernels.

In this paper we draw a picture of the performance of
NFV, when implemented as Linux containers. We present our
testbed, in which we use iperf3 in order to stress chains of
VNFs and measure their maximal performance. In particular,
we show how chains of VNFs perform as a function of the
length of the chain. We also consider different configuration
set-ups, including the use of Open vSwitch [5] (OvS) switches.
We show that container-based chains of VNFs perform very
well under stress tests, leading to only minor performance
losses when making the best possible configuration choices.
Considering the rising industry adoption of Docker, a project
that enables fast packaging and deployment of applications as
Linux containers, a Docker-based registry containing standard
VNFs would enable fast deployment and reconfiguration of
cloud infrastructures.



II. RELATED WORK

Martins et al. [6] propose ClickOS, a NFV platform based
on Xen [7], which provides a wide range of performance
results. ClickOS is composed of a number of improvements
on the Xen networking code, a customized lightweight guest
OS, and a tool to manage the VMs. ClickOS is suitable for
Xen users, but is unsuitable for containers due to dependency
and deployment toolchain incompatibilities.

Blendin et al. [8] propose an infrastructure that facilitates
the deployment of dynamic service chains, thereby enabling
the creation of one individual chain per end user. They rely
on OpenFlow [9] to route packets to the correct service nodes.
There is only one service per node, and each node runs
multiple instances of the same service, one for each user. In
contrast, we focus on the case of service chains hosted in the
same node.

Qazi et al. [10] propose SIMPLE, a solution that leverages
Software-Defined Networking (SDN) to enforce logical chain-
ing rules between existing services, without further modifica-
tions. The benchmarks provided for SIMPLE are focused on
both the management part (measuring deploying time), and the
communication overhead necessary to install the forwarding
rules on the switches. These metrics are then inspected for
scalability. The focus of the authors is to evaluate the efficiency
of the management structure, and not of the end-to-end chain
performance, which is our focus.

Emmerich et al. [11] give detailed benchmarks on OvS and
other virtual switching systems. The authors use minimum-
sized packets, trying to reach the line rate of 10GbE cards, all
the tests including at least one pass in the physical network
interface. The VMs used during the tests are full-fledged
virtual machines, and not containers.

The author of [12] ran some tests of OvS chains, using two
different ways to connect them: veth and patch ports, as they
are used respectively in OpenStack Neutron and Juno. The
outcome is similar to ours, presented in Section IV-B.

III. METHODOLOGY

In this Section, we present a testbed in which we conducted
several experiments in order to understand the performance of
chaining VNF within containers.

Our test machine is a Dell PowerEdge R410, equipped
with two quad-core Intel Xeon E5606 processors, running at
2.13GHz without Hyper-Threading. The machine contains six
modules of 2GiB of DDR3 RAM, running at 1333MHz, i.e. a
total of 12GiB. We installed Debian Sid in order to get the
latest software updates. Currently, the kernel version is 4.4.0.

Each experiment consists in a 30-seconds session of
iperf3, repeated 10 times. Opting for iperf3 is a natural
choice for two reasons. First, the active development of version
2 has stopped (only bugfixes are provided). Second, version 3
ships with new parameters, namely affinity, that enables
to pin the process to a specific processor, and zerocopy,
that reduces the number of system calls, moving part of the
responsibility directly to the kernel (i.e. using the sendfile
syscall instead of write). Furthermore, it is possible to ask

iperf3 to aggressively take all the available bandwidth, even
for UDP tests, a chance previously applicable only with TCP
congestion control. Depending on the specific conditions, these
modifications can significantly improve the performance.

Some initial observations show that a single flow does not
saturate all the CPU cores. To reach the peak load, we need
multiple simultaneous flows. This scenario is obtained with
parallel and independent instances of iperf3. For each flow,
a pair of one server and one client is launched on a different
TCP/UDP port. The recorded throughput is the sum of the
values reported by all the instances.

Our goal is to test chains of container-like entities. The
topology building blocks are network namespaces, the under-
lying networking part for Linux containers, e.g. Docker [4] and
OpenVZ [13]. A network namespace is an independent copy of
the system networking stack, equipped with its own interfaces,
routing tables and so on. In particular, each interface can
be reassigned to another namespace; and any process started
inside a namespace can only see the interfaces associated to
its namespace. We expect user-friendly container solutions
like Docker to add a small but constant overhead, thus our
results should be qualitatively valid across all Linux-based
containerization platforms.

To connect our namespaces together, thus creating a chain of
namespaces, we employed two techniques. The simplest one
is the Linux virtual ethernet (veth), that is part of the kernel.
As an alternative, we used OvS to create virtual switches. Two
approaches are possible to connect switches and namespaces:
either veth couples, attaching one end to a switch and the other
to a namespace, or OvS internal ports, assigning them directly
to the namespaces.

Other means to interconnect namespaces also exist. For
example, instead of OvS, it is possible to use the virtual
bridge shipped with the Linux kernel, whose performances
are underwhelming when compared to OvS [11]. The VALE
switch [14] relies on the netmap API to achieve high(er)-
speed throughput. However, its use is not yet widespread, and
the integration of VALE within the system is not straightfor-
ward.

The complete source code for our testbed is publicly avail-
able on GitHub at https://github.com/serl/topoblocktest.

IV. RESULTS

As detailed in Section III, our testbed runs on a single
machine, and, in order to be able to chain VNFs, we need
to emulate the network that provides the connectivity between
the namespaces. This can be achieved either with pairs of
virtual ethernet (veth), provided by the Linux kernel itself, or
through exogenous softwares, such as Open vSwitch (OvS).
In this Section, we first consider the maximum achievable
performance with TCP and UDP flows on this infrastructure,
which gives us the baseline for assessing the performance
of service chaining. Then, we consider the performance loss
resulting from chains of OvS switches, as they are commonly
used in real-world applications, e.g. with OpenStack. After
that, we consider the performance of namespace chaining as a

https://github.com/serl/topoblocktest


function of the length of the chain, first without any application
running inside the namespaces, and subsequently with two
standard VNFs: firewalls and traffic shaping.

A. Calibration

In order to assess the performance of service chaining, we
first need to know the maximum achievable performances
with our testbed. For this reason, we benchmark the testbed
with iperf3. We run a number of iperf3 servers in
one namespace, and the same number of iperf3 clients
in another namespace; these two namespaces are connected
directly with a veth link. Each experiment is repeated 10 times.

Fig. 1. Throughput with TCP over veth, with and without zerocopy

Figure 1 plots the throughput obtained on our machine
for a number of parallel TCP flows. The full line shows
that the maximum throughput for TCP, without any en-
hancement, is 63.9Gbps±258Mbps. The dashed line shows
that the maximum throughput obtained when using the
zerocopy option of iperf3 is 154.8Gbps±406Mbps,
meaning that zerocopy increases performances between
25%-170%. Moreover, we saw that the packet size that we
specified to iperf3 did not impact the obtained throughput
because the transmitted packets are aggregated at the network
stack as jumbo packets (64 KB).

In contrast, with UDP, Figure 2 shows how packet size sig-
nificantly impacts the throughput. The maximum throughput
is reached for 6 flows composed of 32 KB packets, reaching
105Gbps±2Gbps. Compared to plain TCP, this represents an
increase of around 65%; but is a third less than the bandwidth
achieved with zerocopy activated.

Fig. 2. Throughput with UDP over veth in bits/s

Fig. 3. Throughput with UDP over veth in packets/s

In addition, Figure 3 shows that the number of UDP packets
per seconds created by the kernel is not constant. The overall
load does not depend only on the packets header treatment,
but also on their size, even if everything happens on the
same physical hardware. When there are more than 4 flows,
namely when there are more running instances of iperf3
than available CPU cores, we see a drop in throughput once
the packet size is larger than 32 KB1. We believe this behavior
is caused by the need for additional CPU cycles, for example
for getting additional data into processor caches. We confirmed
this intuition by looking at the CPU utilization data, which
shows that the processor is fully stressed from 5 flows on.

From these initial benchmarks, we extract our baseline,
which equals the best achievable throughput with each pro-
tocol: either 8 TCP flows with zerocopy enabled, or 6 UDP
flows with 32 KB packets.

B. Chains of Open vSwitch switches
In this Section, we study the performance loss induced by

chaining OvS switches. Chains of OvS switches are ubiquitous
nowadays, as they are the default configuration used by
OpenStack. In particular, we are interested in the best way
to connect two OvS switches. Figure 4 shows how two OvS
switches can be connected either through a pair of veth, or
through an OvS patch port.

NS
veth

OvS
veth

OvS OvS
veth

OvS
veth

NSinternal patch patch internal

Fig. 4. Methods to connect a pair of OvS switches

Figure 5 plots the performance achieved for 8 TCP flows for
a chain composed of up to 20 OvS switches connected with
either method. It shows that the performance of veth is lower
than the performance of patch ports. As explained by [15],
[16], opting for OvS pach ports implies that the data path will
be unique inside the kernel, effectively meaning that multiple
OvS switches behave like a single larger one. This is confirmed
by Figure 5, which shows that OvS switches chained with
patch port perform independently of the length of the chain.
This part of our work strongly confirms the conclusion of [12].

1Even though Figure 3 only plots a handful of cases for the sake of
readability, our complete set of experiments confirms this behaviour.



Fig. 5. TCP over a chain of OvS switches

C. Chains of Namespaces

Now, we focus on chains of namespaces. As Figure 6 shows,
there are also multiple ways to connect two namespaces in
order to create a chain. The first method is to use a pair
of veth interfaces, and to assign each interface to a different
namespace, thereby solely relying on the Linux kernel. The
second method is to rely on external software, in this case
Open vSwitch, in order to connect the namespaces. As detailed
in Figure 6, we use internal ports to connect a namespace to a
switch, each switch being only connected to two namespaces.
Each namespace in the chain is configured to forward packets
from one interface to the other one through the use of static
routes, and with the forwarding flag enabled.

NS NSNS NS NS NS

veth OvS + internal ports

Fig. 6. Methods to chain namespaces

Fig. 7. Throughput with TCP over a chain of namespaces

Figure 7 plots the performance achieved by TCP flows
going through namespace chains in these configurations. When
OvS is used to connect pairs of namespaces, the performance
degrades compared to veth. This is not surprising, as we expect
the OvS code to be more complex than the veth one. Moreover,

Fig. 8. Throughput with UDP over a chain of namespaces

the veth code is part of the Linux kernel, whereas OvS is an
external application running on the machine. In addition, in
this particular scenario, using OvS is an overkill, as it is used
to connect pairs of entities.

Independently from the type of the interconnection links,
Figure 7 also shows that the performances evolves with the
length of the chain. This decrease in throughput behaves much
like the powerlaw tout = (1− l)

n
tin, where tout is the achieved

throughput, l the percentage of loss of throughput induced by
going through one namespace, n the length of the chain, and
tin the input throughput. For example, using the 8 TCP flows
over veth, i.e. the red dashed line in Figure 7, we see that
the performance loss induced by one additional namespace
between n = 2 and n = 3 is about 11%, when the throughput
decreases from approximately 155Gb/s to 138Gb/s. Therefore,
by using this power law, the throughput achieved for a chain of
n = 5 namespaces is tout = (1− 0.11)

5−1 · 155 = 97.25Gb/s,
which is the value reported on Figure 7. Please note that we
remove 1 to the chain length because we compare to the case
where n = 2. This behavior also holds true when comparing
the performances of veth links and OvS switches. Adding
an OvS switch between two successive namespaces induces
an additional loss of performance. The performance loss
induced by the pair OvS switch/namespace can be modeled as
tout = ((1− lOvS) (1− lns))

n
tin where lOvS is the loss induced

by the OvS switch, and lns is the loss induced by the use
of a namespace. By using the value of the loss induced by
an OvS switch as shown in Figure 5, using the formula we
presented, we get the values illustrated by the 8 TCP flows
over OvS in Figure 7. However, while these observations hold
true for the beginning of the curve, it appears that the decline
of performance flattens with an increase of namespaces, i.e. the
loss of performance lessens with more namespaces. We believe
that a full model of the throughput loss should also take
into consideration hardware issues (number of cores, memory
architecture, etc.), and, as a result, is more complex than
the rule of thumb we presented here. For example, the loss
is around 15% for the third namespace, but only 2% per
additional namespace when the chain is around 20 namespaces
long. Consequently, we leave the full analysis of the evolution
of the throughput and its contributing factors when chaining
VNFs as future work.



Now that we have analyzed the performance achieved by
chaining namespaces, sections IV-C1 and IV-C2 will focus on
the performances of real-world standard VNFs implemented
within these namespaces, namely firewalls and traffic shaping.
Following the results in this Section, we will chain the
namespaces using veth pairs. Moreover, we will consider UDP
flows exclusively, so as to measure the performance of these
VNFs under constant load, without interferences from the
TCP stack and/or protocol. For reference, Figure 8 depicts
the performance of namespace chains crossed by UDP traffic.

1) Chains of Firewall VNFs: In order to measure the
performance of firewalls VNFs within containers, we use the
Linux iptables firewall, which allows for both stateless
and stateful rules. In iptables, rules are added to user-
defined chains that are part of tables. Each table is used for
different kinds of rules, for example filtering, NATing, etc. In
this experiment, we add a number of rules to a chain in the
filtering table. We use both stateless rules, e.g. a rule matching
an unused IP address, and stateful rules, e.g. count the amounts
of bytes transferred for all connections. As a result, all the rules
are checked and executed by iptables, thereby presenting
a worst-case scenario.

Fig. 9. Firewall VNF: performances for Linux iptables

First, we focus on the performance of iptables itself.
Figure 9 plots the throughput achieved by a single instance of
an iptables VNF, depending on the number and types of
rules, and the number of UDP flows. It shows that stateless
rules perform better than stateful rules, and that the firewalling
appears to scale with the number of connections, up to our
hardware-achievable maximum of 8.

Figure 9 delineates that, even though there is no sudden
loss of performance, there is still a degradation of about
50% of the global throughput for 8 flows and 1000 rules.
Would it be possible to achieve better performances if the
same number of rules are spread over multiple instances of
iptables, in other words if we divide the rules among
multiple VNFs and chain them together? Figure 10 describes
the cost of iptables rules spread over a namespace chain.
In this scenario, we used exclusively stateful rules, to achieve
the worst-case scenario possible. The total rules are spread
over n− 1 namespaces, i.e. there aren’t any rules in the final
namespace. It shows that, in general, independently of the

number of rules, the throughput decreases as we spread the
rules across an increasing number of namespaces. In most
cases, the throughput achieved with chaining (Figure 10) is
lower than the throughput achieved with a single instance
of iptables (Figure 9) for the same total number of
rules. In other words, the additional routing costs due to
additional namespaces (as the packets need to be routed from
a namespace to the next one) do not compensate for the loss of
performance due to an increase in the number of iptables
rules.

The specific case of performance improvement for 1000
rules and 4 flows (Figure 10b) can be easily explained by
the specifics of our hardware environment: in this scenario
the number of processes is equal to the number of processors,
meaning that there are no scheduling issues.

Comparing figures 10a, 10b and 10c together, we see that,
as the total number of rules increases, the loss of performances
due to an additional iptables VNF decreases. This is
because the routing costs gets closer to the application cost,
i.e. to the cost of running iptables. As a consequence, for
a large number of rules, it may be beneficial to spread the
rules over a chain of namespaces. However, since chains of
VNFs are deployed in a data center following a tenant request,
and since the basic infrastructure itself is already secured, it is
unlikely that any tenant would require so many custom firewall
rules.

2) Chains of Traffic Shaping VNFs: In order to measure the
performance of traffic shapers as VNFs within containers, we
use the Linux package “traffic control”, tc, in order to set up
a hierarchical token bucket (HTB) discipline. We set a hard-
limit rate of 1 Tb/s and a large buffer. Figure 11 depicts the
performances measured in this setup, according to the length
of the chain of VNFs. These results are very similar to the
100 iptables rules results shown in Figure 10a. This is
because, in both cases, the VNFs do not handle much work:
100 rules is a relatively low number of rules for a firewall,
and the HTB shaper is quite simple. As a result, most of the
performance loss induced in both experiments mostly display
the overhead related to the use of additional namespaces, and
not of the application.

V. CONCLUSION

When compared to traditional system virtualization tech-
niques, i.e. fully-fledged virtual machines, Linux containers,
which are built on top of namespaces, enable significant
resource savings by isolating the application process, while
sharing the rest of the operating system (kernel, libraries, etc.)
with other processes concurrently running on the machine.
This makes containers an appealing candidate for implement-
ing NFV-based service chains in public (and private) data
centers where each tenant requires their own set of network
functions to be applied to their network traffic.

In this paper, we investigated the raw performance that can
be achieved with container-based service chains, where the
whole chain is hosted on a single physical server. We discussed
the best approach to interconnect containers with one another,



(a) 100 total rules (b) 1000 total rules (c) 5000 total rules

Fig. 10. Firewall VNF chaining: UDP over a chain of iptables namespaces with stateful rules

Fig. 11. Traffic shaping VNF chaining: UDP over a chain of tc namespaces
running a hierarchical token bucket

that in our case turned out to be Linux virtual ethernet. We
presented a first approximation of the performance loss model
with respect to the chain length that is based on a power
law function. This model, while satisfactory with chains of
small lengths, is not precise enough when considering chains
of tens of namespaces: there appears to be dependencies on
the physical hardware that powers the network and the VNFs.
Moreover, we considered chains of real-world VNFs, namely
firewalls and traffic shapers. In this case, we showed that
the networking cost is in general greater that the application
cost, suggesting to group the services in the least number of
namespaces, if possible.

As future work, we intend to pursue our efforts by in-
vestigating the impact on the performance as a function of
the number of active chains. Another key point concerns the
VNFs chained: it is more likely that a real-world scenario
would involve multiple distinct VNFs, instead of homogeneous
services. As a result, the application cost would differ from
VNF to VNF, and optimizing the process over the whole chain
will prove to be challenging. We are also interested in studying
how chains, or part of chains, could be shared among tenants,
i.e. how the management of a data center could minimize
the amount of deployed VNFs by grouping identical tenant
requirements inside the same namespace, and appropriately
forwarding the flow to the next link of the service chain, or
end host.

ACKNOWLEDGMENT

This work was partly funded by the French Government
(National Research Agency, ANR) through the “Investments

for the Future”. Program reference #ANR-11-LABX-0031-01.

REFERENCES

[1] N. Yadav, J. Guichard, B. McConnell, C. Jacquenet, M. Smith,
A. Chauhan, M. Boucadair, P. Quinn, R. Manur, T. Nadeau et al.,
“Network service chaining problem statement,” IETF Informational
Internet Draft, Jan 2014.

[2] European Telecommunications Standards Institute, “Network functions
virtualisation (NFV); use cases,” Group Specification Network Functions
Virtualisation (GS NFV) doc. 001 V1.1.1, Oct 2013.

[3] W. John, K. Pentikousis, G. Agapiou, E. Jacob, M. Kind, A. Manzalini,
F. Risso, D. Staessens, R. Steinert, and C. Meirosu, “Research directions
in network service chaining,” in IEEE SDN for Future Networks and
Services (SDN4FNS), 2013, pp. 1–7.

[4] Docker, http://www.docker.com/.
[5] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and S. Shenker,

“Extending Networking into the Virtualization Layer,” in 8h ACM
Workshop on Hot Topics in Networks (HotNets), Oct 2009.

[6] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici, “ClickOS and the art of network function virtualization,”
in 11th USENIX Conference on Networked Systems Design and Imple-
mentation (NSDI), 2014, pp. 459–473.

[7] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” ACM
Special Interest Group on Operating Systems (SIGOPS) Review, vol. 37,
no. 5, pp. 164–177, 2003.

[8] J. Blendin, J. Ruckert, N. Leymann, G. Schyguda, and D. Hausheer,
“Position paper: software-defined network service chaining,” in 3rd
IEEE European Workshop on Software Defined Networks (EWSDN),
2014, pp. 109–114.

[9] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review
(CCR), vol. 38, no. 2, pp. 69–74, 2008.

[10] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu,
“SIMPLE-fying middlebox policy enforcement using SDN,” in ACM
SIGCOMM Computer Communication Review (CCR), vol. 43, no. 4,
2013, pp. 27–38.

[11] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle, “Performance
characteristics of virtual switching,” in 3rd International Conference on
Cloud Networking (CLOUDNET), Oct 2014, pp. 120–125.

[12] Open Cloud Blog, “Switching Performance – Chaining OVS bridges,”
2014, http://www.opencloudblog.com/?p=386.

[13] OpenVZ, https://openvz.org/.
[14] L. Rizzo and G. Lettieri, “VALE, a switched ethernet for virtual ma-

chines,” in 8th ACM International Conference on Emerging Networking
Experiments and Technologies (CoNEXT), 2012, pp. 61–72.

[15] Open vSwitch, “Frequently asked questions: How do I connect
two bridges?” https://github.com/openvswitch/ovs/blob/master/FAQ.md#
q-how-do-i-connect-two-bridges, May 2016.

[16] J. Pettit, “OvS performance with OpenStack Neutron,”
http://openvswitch.org/pipermail/discuss/2013-December/012383.html,
Dec 2013.

http://www.docker.com/
http://www.opencloudblog.com/?p=386
https://openvz.org/
https://github.com/openvswitch/ovs/blob/master/FAQ.md#q-how-do-i-connect-two-bridges
https://github.com/openvswitch/ovs/blob/master/FAQ.md#q-how-do-i-connect-two-bridges
http://openvswitch.org/pipermail/discuss/2013-December/012383.html

