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Abstract—In Data Centers (DCs), an abundance of virtual
machines (VMs) remain idle due to network services awaiting for
incoming connections, or due to established-and-idling sessions.
These VMs lead to wastage of RAM - the scarcest resource in
DCs - as they lock their allocated memory.

In this paper, we introduce SEaMLESS, a solution designed
to (i) transform fully-fledged idle VMs into lightweight and
resourceless virtual network functions (VNFs), then (:7) reduces
the allocated memory to those idle VMs. By replacing idle VMs
with VNFs, SEaMLESS provides fast VM restoration upon user
activity detection, thereby introducing limited impact on the
Quality of Experience (QoE). Our results show that SEaMLESS
can consolidate hundreds of VMs as VNFs onto one single
machine. SEaMLESS is thus able to release the majority of the
memory allocated to idle VMs. This freed memory can then
be reassigned to new VMs, or lead to massive consolidation, to
enable a better utilization of DC resources.

I. INTRODUCTION

Data Centers rely on virtual machine (VM) placement
algorithms to choose the best server to deploy a given VM, so
as to globally optimize the use of available physical resources,
e.g. maximize the number of running VMs on a given physical
infrastructure. At the same time, some studies show that idle
VMs are a common problem in Data Centers. For instance,
[1] reports that 30% of VMs deployed within a data center
remain in a comatose state, with little to no sign of activity.
In public clouds, idle VMs are frequently encountered when
tenants instantiate their own DNS or mail servers [2]. In private
clouds of software outsourcing companies, VMs are used by
software developers to design and test new applications; these
VMs exhibit frequent idle periods and are rarely powered off,
even outside of office hours or during holiday periods.

Even though they are not actively used, these VMs still
lock the physical resources they have been allocated, especially
RAM, which is currently the scarcest resource in data centers
[3], [4]. Placement algorithms are unfit to manage this kind
of behavior and may end up unable to deploy new VMs due
to unavailable resources.

Consequently, the abundance of idle VMs introduces a
waste of memory problem, which derives from the standard
data center administration practice to avoid memory overcom-
mitment. Unfortunately, these idle VMs cannot be powered off
as they usually host network-based services that are essential
to end-users. Reducing the amount of memory allocated to
idle VMs is thus necessary. Existing solutions either rely on an
application-level proxy server to turn off the VMs and waking

them up on demand [2], [5]; or put stringent constraints on the
application’s design [4]. As a result, they heavily impact the
user experience due to extensive delays and fail to propose a
generic or easily implementable methodology.

We previously briefly introduced SEaMLESS and its core
concept of replacing idle VMs with lightweight and resource-
less Virtual Network Functions (VNFs) by leveraging Linux
namespaces and process migration [6]. Now, we extend SEaM-
LESS by providing means of decreasing the memory allocated
to idle VMs and stop their execution. We also provide a large
evaluation of the SEaMLESS performance and capabilities.

Hereafter, we present the details of SEaMLESS and the
procedures to migrate a so-called Gateway Process from
within an idle VM to an external, lightweight and resourceless
Sink Container (Section II). These VNFs provide a feeling of
service availability to end-users. We will show that we are able
to replace hundreds of idle VMs hosted over multiples physical
servers by their corresponding VNF on a single physical
server or VM (Section IV-D). The Sink Container monitors
the service for signs of user activity (Section II-C). Upon
positive detection, the original VM environment is resumed
and the service will continue its execution transparently with
minimum impact on the quality of experience (Section IV-B).
Because the VNFs are considerably lighter than the full VM
environments, we will show how to employ SEaMLESS to
reduce the memory footprint of idle VMs at the scale of a
data center (Section IV-F), while preserving the quality of
experience. This freed memory can then be assigned to new
VMs, leading to better utilization of the physical resources in
the data center. Or, coupling this methodology with ubiquitous
consolidation solutions, such as BtrPlace [7], enabling massive
consolidation in data centers, and the possibility to group idle
VMs on few servers while powering down the empty ones,
leading to energy saving and economies on operating costs.

II. SOLVING THE IDLE-VM PROBLEM

Virtual Machines (VMs) in data centers are accessible
through one or several processes waiting for incoming con-
nections or requests by listening to network ports. We refer to
each of these processes as Gateway Processes. In this Section,
we present how SEaMLESS migrates every Gateway Process
from a VM that has been idle for a long-enough period of
time to a Sink Server.
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Fig. 1: Components and architecture of SEaMLESS

In more details, using Figure 1 as illustration, a virtual
machine hosts a large set of processes, including a Gateway
Process. Once the VM has been detected as idle, the SEaM-
LESS Orchestrator — an agent responsible for the synchro-
nization of the migration — transfers the Gateway Process to
the Sink Server with all its states and including any open
socket, effectively turning it into a Virtual Network Function
(VNF). Typically, processes access and reference elements
such as files, devices or libraries. These external resources
are not copied to the Sink Server to ensure a lightweight
environment. When the VNF exhibits signs of user activity,
the Gateway Process will be migrated back from the Sink
Server and restored in its original VM environment so as to
fulfill the user requests.

SEaMLESS is completely transparent from the end user
point of view. Indeed, migrating back and forth the Gateway
Process between its VM and the Sink Server is faster than
migrating the entire VM, and by keeping the Gateway Process
running while the VM is paused or turned off, SEaMLESS can
maintain any persistent idle connections, either at the transport
or at the application layer.

The remainder of this Section is organized as follows.
Section II-A focuses on the creation and the structure of
the VNF for the Gateway Process. Afterwards, Section II-B
describes the migration procedures that are followed by the
Orchestrator to guarantee a successful migration. Finally,
Section II-C presents the way we detect user activity in the
Sink Container, in order to know when to resume the VM and
migrate the Gateway Process back.

A. The Gateway Process VNF

SEaMLESS relies on the creation of an ad-hoc Virtual
Network Function for the Gateway Process. This VNF must
run in an environment that provides isolation, and also be
lightweight in terms of memory and CPU consumption. For
these reasons, we chose to run Gateway Process VNFs inside
Linux namespaces, the underlying element of Linux contain-
ers, such as used by Docker [8]. In the remainder of this article,
we interchangeably use namespace and container.

The VNF itself is a lightweight version of the Gateway
Process. Namely, we migrate every Gateway Process from
its original environment, inside the virtual machine, to a
container located on the Sink Server. As illustrated in Figure 2,

when a Gateway Process runs inside its VM, it is part of a
process ecosystem, that is formed, among other things, by
its process ID (PID), file system beacons, file descriptors,
libraries, etc. Our goal in SEaMLESS is to only migrate the
Gateway Process itself, without these side elements. However,
this ecosystem is essential for the Gateway Process to continue
executing faultless. We now provide some insights into how
to achieve this goal.
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Fig. 2: A possible Gateway Process ecosystem and its re-
sources

First, a process is identified by its unique PID. Its value must
be preserved to guarantee successful migrations, which we
achieve by relying on both the mount and the PID namespace
in our Sink Container to isolate the proc and sys filesystems.
Consequently, when multiple processes from multiple VMs are
migrated to the Sink Server, it is possible for these gateway
processes to use the same PID.

Second, processes rely on external, dynamically linked
shared libraries, which are loaded, unloaded, and linked to
a process during runtime. If these libraries are unavailable,
the program might experience segmentation faults. Since VMs
deployed in IaaS environments are created from a template
image, SEaMLESS can use this very same image to instantiate
the Sink Server, thereby guaranteeing the availability of these
libraries. In particular, it prevents the transfer of the libraries
between the VM and the Sink Server.

Third, a process possesses many file descriptors to standard
outputs and standard input devices (e.g. stdout, stderr
and stdin), but also to standard files, directories, memory-
mapped files, and various devices. To handle external resources
eventually needed by the Gateway Process, we decided to
point them out to empty, temporary files in the Sink Container
created on the fly. We leverage the mount namespace
to ensure consistency between the Sink Container and the
original VM by recreating the required folder trees. Since the
Gateway Process is expected to access the external resources
only in case of user activity, which will trigger the migration
of the Gateway Process to the VM (discussed in Section II-C),
the empty files at the Sink Container will not introduce any
problem during the Gateway Process’s runtime. In the case
where the Gateway Process needs to access external resources
in absence of user activity (e.g. for generating log entries),



SEaMLESS can be configured to properly export the data back
to these VMs or to ignore them altogether.

Fourth, a process usually depends on Unix sockets or
network-based sockets for external communications. SEaM-
LESS shall be able to maintain existing connections (e.g. es-
tablished SSH sessions) even after the VM has been stopped.
Users shall remain connected to the Gateway Process VNF
after the process migration, without connection teardown or
data loss. To achieve this, and also avoid customized kernels
with obscure patches and exclusive hardware devices, we rely
on CRIU (Checkpoint/Restore In Userspace) [9], a modern
actively developed software to enable the migration of a
processes. CRIU’s hooks are now part of the official Linux
kernel code. CRIU is able to checkpoint or dump a given
process to later restore it while preserving all sockets and
pipes. As a result, with CRIU, SEaMLESS is able to write
to disk a Gateway Process, and later restore this Gateway
Process along with all its established network connections
(e.g. keeping alive already established SSH session), either
at the Sink Container or the VM.

In summary, we migrate a Gateway Process inside a VM
to a Sink Container on a Sink Server. The Sink Container is
composed out of Linux namespaces: a PID namespace, a
mount namespace and a network namespace popu-
lated with two virtual ethernet devices (veths), supported by
default in current Linux distributions. One veth is connected
to the public LAN, where the data packets from the users are
expected to pass and must be configured with the IP address
of the VM where the Gateway Process is coming from. The
second veth is connected to the management LAN, used to
exchange the Gateway Processes images between the Sink
Containers and VMs.

B. Migration Procedures

In this Section, we present the procedures to orchestrate the
migrations of a Gateway Process between the Sink Container
and its VM, and vice versa. Note that the Gateway Process mi-
gration must be perfectly coordinated with network rerouting
strategies to avoid data packet losses.

1) Migrating from the VM to the Sink Server: When a
virtual machine is known and expected to be idle for a long
period of time, the Orchestrator will trigger the Gateway
Process migration to the Sink Server.

The complete procedure for a process migration from the
VM to the Sink Server must follow a set of steps enumerated
below. Note that when a single step includes several actions,
these actions should be parallelized.

Step #1: The Orchestrator asks the working VM to dump
every Gateway Process to a file. It keeps the processes running,
which allows the VM to detect any user activity. Should any
user activity be detected, the VM sends an abort message
to the Orchestrator to cancel the migration, without any
message loss. Step #2: Once the process image has been
generated, the working VM sends the process image file to the
Sink Server. Step #3: The Sink Server deploys the Gateway
Process VNF. Step #4: The networking devices are modified

to forward packets to the Sink Container. At the same time, the
Orchestrator asks the working VM to kill the Gateway Process.
Step #5: The Orchestrator reduces the memory footprint of the
VM (explained in Section III).

Note that the detection of any user activity during the Sink
Container deployment will result in a roll-back mechanism
that is completely transparent from the user perspective.

2) Migrating from the Sink Server to the VM: The proce-
dure to move a Gateway Process back from the Sink Server
to the VM is close to the reverse procedure described earlier,
except that when a process is moved from the Sink Server
to the VM, the user has already issued a request and user’s
packets can flow at any time.

Step #1: Upon detection of user activity in the VNF, the
Sink Server notifies the Orchestrator that the corresponding
VM must be woken up. Step #2: Using the Netfilter Queue
(NFQUEUE) available in current Linux distributions, a buffer
is deployed in the physical server hosting the VM in order
to store packets sent with the VM as destination. Step #3:
The Orchestrator resumes the VM and modifies the routing
table to forward future packets to the VM instead of the Sink
Container. While these operations take place, the Gateway
Process at the Sink Server is dumped. Step #4: Once the VM
is on, the process image is sent from the Sink Server to the
VM. Step #5: The process is deployed at the VM, Step #6:
Eventual packets are unbuffered from the NFQUEUE buffer,
the filter is destroyed, and the communication is now handled
by the VM.

3) Addressing Routing Issues: To properly reroute packets
to the Gateway Process VNF or to the VM, SEaMLESS
entirely relies on Software Defined Network (SDN) forward-
ing devices and/or Virtual eXtensible Local Area Network
(VXLAN) [10]. Hence, the Orchestrator asks the SDN con-
troller to inject the ad-hoc rules into the SDN switches during
the migration procedures or the Orchestrator properly updates
the required VXLAN tunnels.

Note that SDN (through OpenvSwitches devices — OvS —
[11]) and VXLAN technologies are already deployed in current
Data Centers when enabling VM migrations and Networking
as a Service (NaaS) to provide Infrastructure as a Service
(TaaS). This is the case for instance of OpenStack configu-
rations with Neutron [12].

C. Detecting User Activity

Once the Sink Container is deployed, it is the Sink Con-
tainer that will first handle any communication with the remote
user. Two questions arise at this point: (¢) how to detect user
activity; and (i¢) how to prevent the Gateway Process VNF
from taking over the entire communication with the end user.

First, we highlight that not all incoming network packets are
a prelude to user activities, such as ICMP, ARP, or application-
level keep-alive messages. They consequently must not trigger
the process of VM awaking. Typically, messages at the trans-
port layer or below are directly replied to by the protocol
stack available at the Sink Container. However, application-
layer keep-alive messages require the execution of code at



the Gateway Process, but do not need user data. SEaMLESS
implements an accurate solution to successfully handle keep-
alive applications messages without the need for restoring the
VM.

To understand the way SEaMLESS detects real user activity,
we need to understand first the behaviors that a Gateway
Process may have when it receives a new user’s message. If the
Gateway Process employs TCP, a user message might request
a new connexion setup with the server, verify the existence of
an application-level channel (e.g. SSH keep-alive messages)
or ask for external data (not available at the Sink Container).
If the Gateway Process employs UDP, a user message might
carry a membership verification/update at the application-level
or ask for external data (again, not available at the Sink
Container).

After analyzing several Gateway Processes applications,
we have observed that a request for a new TCP connection
raises an accept () system call (usually referred to as a
syscall simply), which is applied through the TCP socket’s
file descriptor.

Keep-alive application messages and membership verifica-
tion, or membership update, raise a read () syscall followed
by a write () syscall, both on the file descriptor of the
network (TCP or UDP) socket. This means that the message
of the user has been processed by the Gateway Process code
without needing external data.

User’s messages requesting external data raise a read ()
syscall on the file descriptor of the networking socket, fol-
lowed by a write() or a read() on a different file
descriptor, which in our case will point to a dummy zero-byte
file.

Consequently, to accurately detect user activity needing data
not available at the Sink Container, SEaMLESS relies on
syscalls tracking over the Gateway Process inside the Sink
Container. In particular, we track the read (), write () and
equivalent system calls made through file descriptors pointing
to dummy files or newly created file descriptors, as well as
accept () syscalls wherever it occurs.

Syscall tracing can be easily done in Linux using the
ptrace library, whose required hooks are available by default
in most Linux kernel versions. Technically, with the ptrace
library, for each (specified) syscall, the kernel will trap the
Gateway Process (via a SIGTRAP signal), and notify SEaM-
LESS of the syscall. Namely, the Gateway Process is stopped
at every trap. After we have collected the file descriptor
numbers, we need to restart the execution of the Gateway
Process by means of the restart (SIGCONT) signal, if the
SEaMLESS heuristic decides that the Sink Container can
process the message by itself. Otherwise, SEaMLESS stops the
Gateway Process execution completely (with the SIGSTOP
signal) and starts the migration procedure of the Gateway
Process from the Sink Container to the VM. Hence, it is the
VM and not the Sink Container that will reply to the user’s
request.

Figure 3 graphically illustrates the case where a message
is received through the TCP socket with file descriptor ID
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Fig. 3: Detecting user activity exhibited by the Gateway
Process VNF

4, which triggers a write through a different file descriptor
identifier, hence making SEaMLESS stopping the execution
of the Gateway Process, to move back later such a process to
the VM.

III. SOLVING THE WASTE OF MEMORY PROBLEM

SEaMLESS substitutes a lightweight resourceless VNF in-
side a Sink Container in place of an idle VM. Consequently,
while the Gateway Process VNF awaits for incoming user
requests, the idle VM resources can be freed. However,
stopped VMs should keep all user states, in order to provide
an unchanged environment when the Gateway Process needs
to be restored inside the original VM.

Most hypervisors support two modes of stopping VMs
which keep the VM states unchanged: suspend to RAM and
suspend to Disk. When suspending to RAM, a VM and its
processes are paused and remain in the memory of the physical
server. Hence, no memory is actually released; but restoring
the VM only takes a few milliseconds. When suspending to
disk, the VM and its processes are written to disk. Conse-
quently, the delay when restoring a suspended to disk is longer
than the equivalent delay for a suspend to RAM. The measured
time required to reload a VM suspended to disk depends on the
virtualization technology. For instance, while in QEMU/KVM
the entire VM memory needs to be reloaded into the RAM
memory before the VM is able to execute any instruction,
VMWare ESXi adopts an approach called lazy restore, where
the memory is only partially loaded into the RAM before the
VM starts executing any instruction [13]. If the instructions
executed by the VM are not yet loaded into memory, the read
fault is caught by the hypervisor and the missing region loaded
as soon as possible. The instruction is then finally executed.



Inspired by this lazy restore approach of VMWare, we
devised a solution we call suspend to swap, able to deallocate
memory from an idle VM while providing fast restoration
and fast availability of services. We currently tested suspend
to swap with the QEMU/KVM hypervisor. Suspend to swap
meets the objectives of SEaMLESS: avoid any modification in
the hypervisor, avoid any kernel-level patching, and leveraging
only currently available Linux features.

Our suspend to swap relies on ballooning [14], available
in all major virtualization solutions, and on Linux cgroups
(control groups). It works as follows. () To deallocate memory
from an idle VM, we first inflate the balloon to recover the
free memory of the guest VM on the physical host. Note
that inflating the balloon beyond the available free memory
can lead to a high memory pressure on the guest VM,
possibly triggering out-of-memory errors and the associated
procedure which kills some processes to mitigate the memory
pressure, potentially introducing severe modifications in the
user environment. (i2) Using cgroups on the host server, we
limit the maximum memory usage of the guest VM to 10
MB. This triggers a hypervisor swapping procedure, where the
hypervisor writes to (the physical) swap the memory pages
of the VM to meet the host memory constraint. After this
step, the memory footprint of the idle VM is equal to 10 MB,
effectively releasing an important proportion of the memory
used by the idle VM. (iiz) We remove the cgroup memory
constraint on the VM and we perform a dummy Gateway
Process restoration. The goal of this dummy restore is to only
load in the VM’s RAM most of the shared libraries needed by
the Gateway Process, as well as the memory regions needed by
the system for a correct execution, which have been swapped-
in due to the cgroup constraint. This step enables a fast service
restoration of the services when the idle VM needs to be active
again. (v) At the end of the previous step, a proportion of the
memory employed to execute the dummy restoration will be
unused again. Therefore, we once more inflate the balloon to
recover this freed memory for the host. (v) Finally, the virtual
machine is now paused, relying on suspend to RAM. The
execution of the above steps will provide a memory footprint
of the idle VM smaller than 600 MB, as shown in Section
IV-F.

Note that pure hypervisor swapping with cgroups is not a
good option. Indeed, with pure hypervisor swapping both the
dirty and free memory of an idle VM might land to swap.
Hence, when SEaMLESS will restore the Gateway Process,
the VM can employ the free memory available in the swap,
therefore leading to a very slow Gateway Process restoration.

Later, when a VM needs to be restored by SEaMLESS, it
is resumed and the balloon is completely deflated. These op-
erations are very fast operations. Hence, our suspend to swap
strategy provides fast virtual machine restoration, including the
activation of the Gateway Process, as shown in the evaluation
of our wake up delay in Section IV.

IV. PERFORMANCE EVALUATION

In this Section, we evaluate the performance of SEaMLESS
wrt. the perceived end-user Quality of Experience and the
resulting memory savings. In Section IV-B we evaluate the
delay due to the main SEaMLESS components when a Gate-
way Process must be moved from the Sink Container to the
VM. We assess the impact of our suspend to swap strategy
in Section IV-C. The scalability of SEaMLESS is analyzed in
Section IV-D, its reactiveness in Section IV-E, and finally, we
provide insights about the amount of released memory with
SEaMLESS in Section IV-F.

A. Network Testbed

We tested our SEaMLESS prototype on one of the clus-
ters of the Grid5000 network [15], a large-scale testbed for
research experiments on distributed systems. We used Dell
PowerEdge R430 servers equipped with 2 CPU Intel Xeon
E5-2620, 32 GB of memory, 10 Gbps Ethernet NICs.

The testbed consists of three physical hosts on the same
cluster. The first node hosts the SEaMLESS Orchestrator, the
second acts as the Sink Server, and the third node hosts
the user VM. The SEaMLESS management network (used
to transfer Gateway Processes images, and to orchestrate the
SEaMLESS events) and the public network (where users’
packets flow), were setup using VXLAN tunnels.

Rerouting is executed by the Orchestrator by means of
OpenFlow (SDN) rules installed in OvS switches.

B. Impact on the Quality of Experience

A full restoration process involves the execution of the
following phases, each contributing to the unavailability period
of the service: (i) Gateway Process dumping; (i¢¢) image
compression; (¢4¢) image transfer; (iv) image decompression;
(v) processes restoration; and (v¢) synchronization time be-
tween the Sink Container, the Orchestrator and the VM to
dump, transfer and restore a Gateway Process.

To evaluate the time needed by SEaMLESS to restore a
Gateway Process at the VM, we carried out several tests with
different ubiquitous Gateway Process applications on their de-
fault configuration and evaluated the delay of every task using
the system clock. The results are available in Table I, where we
report the delays due to dumping, compressing, transferring,
decompressing, and restoring a Gateway Process. The column
labeled “Total” corresponds to the sum of all previous delays.
The response time delay (labeled “Resp. Delay”) corresponds
to the observed delay between the first packet sent by the
client to the VM, and the first packet sent back from the
restored machine. Hence, the response delay comprises the
components from the “Total” column, plus the time needed
to synchronize the SEaMLESS events (e.g. the signaling of
user activity from the Sink Container to the Orchestrator).
The columns “Image Size” and “VNF size” correspond to the
compressed image size of a Gateway Process (in a tar.lzo
file) and the size of the Sink Container hosting such a Gateway
Process respectively. Images are securely transferred with the
scp command, as it would be done in a real data center.



From our results in Table I, we see that the application
with the largest image file is Tomcat (1.172 MB), followed by
Apache 2 with PHP enabled (0.428 MB). The lightest image
corresponds to the vsftpd application (an FTP/SFTP server)
with only 0.107 MB.

We would like to point out that the PHP application used
with Apache 2 does not impact the Sink Container size, nor
the Gateway Process image size. Indeed, the Gateway Process
image only includes the main PHP engine libraries, and not
the PHP applications themselves, which are loaded as external
resources when needed.

The number of SSH worker processes for both Dropbear
and OpenSSH (and, therefore, the size of the process image)
depends on the number of established SSH sessions. In our
tests, we maintained one single SSH connection for both
Dropbear and OpenSSH, leading to two processes to be
dumped and restored (i.e. the main daemon process, plus the
worker process).

From our tests in Table I, we see that the response delay of
SEaMLESS is generally smaller than 1 second (except for the
case of Tomcat). This is lower than the response time typically
expected by the end users, as reported in [16]. Therefore,
the response delay introduced by SEaMLESS only has little
impact on the end-user quality of experience.

C. Impact of Suspend to Swap

We discussed several VM suspend strategies in Section
III. Namely, suspend to RAM, suspend to disk, and suspend
to swap, which we introduced. In Figure 4, we quantify
the delay that the user will experiment, with the Apache 2-
PHP application, and the OpenSSH application, under those
different strategies.
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Fig. 4: Response time when using different disabling tech-
niques on a 3 GB VM.

From Figure 4, we can observe that the suspend to RAM
strategy is the fastest solution to restore a Gateway Process.
Indeed, the response time is around 1 second for Apache 2-
PHP and lower than 0.5 seconds for OpenSSH. However, as
we stated in Section III, suspend to RAM is unable to release
memory resources. Suspend to disk is the worst solution: the

time linearly increases with the memory size of the VM and,
for the 3GB instance used in our experiment, it leads to a
response time of around 3 seconds with both Apache 2-PHP
and OpenSSH. Our suspend to swap strategy features a faster
restoration than the suspend to disk case method. Suspend to
swap, without pre-swapping out the Gateway Process library
with the dummy restoration, leads to a response time slightly
lower than 1.5 second for Apache 2-PHP, and 0.9 seconds for
OpenSSH, while effectively releasing memory allocated to an
idle VM (details will be discussed in Section IV-F). More-
over, the complete suspend to swap solution (i.e. adding the
dummy Gateway Process restoration) significantly improves
the performance of SEaMLESS, leading to a response delay
slightly higher than 1 and 0.5 seconds for Apache 2-PHP and
OpenSSH respectively.

D. Scalability of the Sink Server

In this Section, we focus on the the scalability of the Sink
Server as a function of the number of Sink Containers. For
doing so, we used as a Sink Server a VM with 1 vCPU and
1 GB of RAM. Figures 5 and 6 illustrate the memory and CPU
consumption of the Sink Server VM when deploying solely
Apache 2-PHP VNFs or OpenSSH VNFs.

As expected, both the memory and CPU usage increase
linearly with the number of deployed Sink Container. Also, we
notice that the number of VNFs that can be installed is limited
by the RAM capacity: deploying more than 10 Apache 2-PHP
VNFs introduces memory swapping as the memory usage is
close to 100%. The swapping phenomenon corresponds to the
plateau in the memory curve. However, the CPU utilization
remains lower than 1%. If we only deploy OpenSSH VNFs,
which has a smaller memory footprint than the Apache 2-PHP
VNEF, we can reach up to 43 OpenSSH VNFs before saturating
the 1GB memory, while the CPU consumption remains lower
than 6%.

These results show that a typical data center server config-
ured with 32GB of RAM can host around 320 Apache 2-
PHP Sink Containers or 1376 OpenSSH Sink Containers,
before experiencing memory swapping. These figures are
much higher than the number of idle VMs that could possibly
be running simultaneously on the same server with only 32GB
of RAM.

E. Reactiveness

To assess the reactiveness of SEaMLESS, we have per-
formed stress tests where we either have several OpenSSH
Sink Containers or several Apache 2-PHP Sink Containers in
a single VM with 5 GB of memory and 1 vCPU. We then
sent one request to each deployed Sink Container, at once, to
emulate a burst of user activity. Each test case was executed
20 times.

Figure 7 shows the response time (which does not include
the wake up delay of the VM), for the cases of 1, 10, and up to
50 Sink Containers with 10 Sink Containers step increases. We
can observe that the response time increases almost linearly.
For one Apache 2-PHP Sink Container it is around 0.9 second;



Application Durp | COmprMT“‘Tiarf;(erT‘[r“Eéilmpn Resiore Total (s) | Resp. Time (s) | Image Size (MB) | VNF Size (MB)
Dropbear 0.026 0.018 0.115 0.02 0.02 0.199 0.406 0.115 11.18
Vsttpd 0.108 | 0.016 0.107 002 | 0.032 0.283 0412 0.107 781
OpenSSH 0.102 0.024 0.133 0.028 0.038 0.325 0.456 0.133 15.93
Lighttpd/PHP | 0.082 | 0.079 0.287 0.093 | 0.063 0.605 0.706 0.287 76.43
Apache2/PHP 0.112 0.118 0.428 0.151 0.089 0.898 0.948 0.428 67.52
Tomcat 0.185 0.275 1.172 0.282 0.1 2.015 2.158 1.172 206.96
TABLE I: Response Time of real-world Gateway Process applications.
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Fig. 5: RAM and CPU used as a function of the number of
deployed Apache 2 with PHP module VNF.

8 seconds for 10 Sink Containers; and 13 seconds for 20
Sink Containers. For OpenSSH Sink Containers, one Sink
Container needs a little less than 0.5 second; around 3 seconds
for 10 Sink Containers; and around 6 seconds for 20 Sink
Containers. Note that the observed response delays exhibit
little variation, with very narrow interquartile ranges.

We have found that the main contributor to the response
time is the access to the disk. Since a single disk is used
to dump and transfer the Gateway Process image at the Sink
Server VM, and at the physical server hosting the VMs a single
disk is used to read the Gateway Process image to be restored,
all those disk operations are sequentially executed.
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Fig. 7: Response time as a function of the number of parallel
OpenSSH VNFs with user activity.
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Fig. 6: RAM and CPU used as a function of the number of
deployed OpenSSH with 1 connection VNF.

FE. Memory Savings

The main objective of SEaMLESS is to release the physical
memory locked by idle VMs. To determine the amount of
RAM that can be freed, we need to estimate the expected
memory consumption of a memory-reduced VM and the ex-
pected memory consumption of its respective Sink Container.
Indeed, the difference of memory consumption (Mgis) pro-
vides insights about the amount of memory to be released. This
value is expressed as follows: Myg = Mym — Myne — MgyMs
where My is the size of the VM memory, Mynr the size of
Sink Container, and My the size of the reduced VM.

The amount of RAM needed by a VM depends on its RAM
size. For instance, using KVM/QEMU, a VM configured with
1 GB of RAM using 80% of its virtual memory will need
around 3.25 GB at the physical host, and a 7 GB VM using
80% of its virtual memory will need around 13 GB of the
physical RAM. The amount of extra memory needed by the
physical host to deploy a VM depends on both the hypervisor
and the virtual RAM size.

However, with our suspend to swap strategy, the size of a
reduced VM shows only small variations. Hence, a 1.7 GB
VM will be reduced to around 500 MB while a 35 GB
VM will be reduced to around 620 MB, according to our
tests using the Apache 2-PHP Gateway Process. Regarding
the Sink Container, its size depends on the Gateway Process
application to be deployed. For instance, the Apache 2-PHP
Sink Container needs around 68 MB, while the OpenSSH Sink
Container only needs around 16 MB.

To exemplify the memory gains that we can obtain by
deploying SEaMLESS in a data center, we consider a scenario



derived from observations made for Amazon Web Services
(AWS) in terms of distribution of VM size and number of VMs
created every day, which amounts to around 50K [17], [18].
Assuming 30% of idle VMs [1], and that all VMs deploy an
Apache 2-PHP instance, we estimate, in Table II, the amount
of memory that can be released for this scenario. Note that
the reported memory savings have been estimated assuming
that the amount of physical RAM needed by a VM is equal to
the virtual RAM size of the instance, and therefore, ignoring
the memory overhead at the hypervisor to keep the VM states.
With these hypotheses, for a total amount of 282 TB RAM
allocated to host the VMs, SEaMLESS can save an impressive
76 TB of RAM every day.

V. DISCUSSION

There are scenarios in which SEaMLESS is unable to oper-
ate due to technical limitations in the underlying technologies
(CRIU and ptrace). Currently, CRIU does not support the
reconnection of Unix stream sockets. Indeed, checkpointing
and killing a process cause the Unix stream socket peer to
close the connection. Hence, it is not possible to restore a
process with a Unix stream socket, as this latter will not
retrieve the expected system environment.

In II-A we stated that instantiating the sink server from
the same template of the idle VM avoids transferring libraries
loaded by the Gateway Process. We are aware that any alter-
ation from the original template may result in failures in the
restoration. However, different versions are easy to detect and
prevent the migration in this case. Additionally, SEaMLESS
is meant to be used in private clouds where VM’s templates
are finely prepared for specific applications thus modifications
are not contemplated.

Since SEaMLESS provides two complementary solutions —
one to create a lightweight Sink Container with the Gateway
Process, and another one to deallocate memory from idle VM
— one might ask why the idle VM is not just shrunk, but leaving
the Gateway Process at the VM, without pausing it. Detaching
the Gateway Process (that must always run), from the VM
(which can be paused), brings several benefits. First, we have
observed that the basic memory set of an idle VM hosting
a Gateway Process slowly grows over time (also observed in
[19]), and could even show sudden memory increases due to
some services such as applications updates. Hence if cgroups
are employed to avoid drastic memory fluctuations of that VM,
future memory needs at the VM will lead to swap in and
out events, inducing system instability at the physical host.
Second, multiple server reconsolidations in the data center can
be easily executed when a VM is suspended, which is achieved
in SEaMLESS thanks to the creation of the Sink Container.
Third, idle VMs need more processing capacity at the physical
server than Sink Containers with paused VMs. Indeed, the
hypervisor needs to monitor the VM events even if the VM is
idle, which is not the case when the VM is paused.

Finally, an important point is the detection of idle VMs.
While defining metrics that allow the identification of idle
VMs is out of the scope of this article, one solution is to rely

on user-based metrics, such as system load, transferred data on
the network, and so on. These metrics are already available to
cloud providers and are frequently used for billing. A number
of possible smart solutions are also proposed in [20].

VI. RELATED WORK

Server resources optimization in data center networks can be
achieved using server consolidation [21], [22], [23]. Multiple
strategies can be employed to achieve server consolidation or
reconsolidation, such as dynamic relocation of VMs [24], live
migration [25], [26], and scheduling and migration algorithms
for cloud data centers [27]. SEaMLESS goes beyond server
(re-)consolidation by reducing the memory footprint of idle
VMs and stopping them. Hence, active VMs can be recon-
solidated in the smallest set of physical servers. The released
resources can then be reused or the unused servers can enter
low power modes. In the past, some propositions have already
been made to tackle the problem of idle VM or desktops [28],
[29], [5], [2], [30]. We briefly discuss those proposals below
and highlight the differences w.r.t. SEaMLESS.

In [28], the authors propose to save energy from idle desktop
machines without any service disruption by live migrating the
user’s desktop environment from the personal computer to a
server VM in a remote data center. This strategy indeed saves
energy at the personal computer. However, on the data center
side, energy is wasted to keep idle VMs on, which is the
problem tackled by SEaMLESS.

The closest approaches to SEaMLESS are [29], [5], [19],
[2], [30]. In [29] the authors employed a sleep-proxy per
subnet, to wake up a client machine whenever a TCP con-
nection is requested. It then forwards the TCP connection
demand to the client and also replies to ARP requests on
behalf of the sleeping client. Since this solution is only able to
recognize TCP connexion requests (by looking at the SYN flag
of the TCP header), already established TCP connections or
UDP-based applications cannot be successfully handled by the
sleep-proxies. SEaMLESS, relying on the Gateway Process of
the idle VM and a simple heuristic monitoring some system
calls (see Section II-C), is able to work with TCP and UDP,
and even encrypted channels, such as the one created by SSH.
Last but not least, in [29], obtaining a response from the
idle client requires at least 8.5s, which means that the TCP
SYN packet will be transmitted several times by the machine
initiating the connection, as TCP will experience timeouts.
In SEaMLESS, TCP SYN and data packets are immediately
acknowledged by the Sink Container, and buffered by CRIU,
avoiding TCP timeouts and data losses.

In [30] a solution to tackle the problem of idle web appli-
cations is proposed. The authors introduce a system, called
DreamServer, where a suspension-aware proxy intercepts the
HTTP requests and awakes the corresponding virtual appliance
hosting the server. Fast virtual machine resuming is achieved
using lazy restoration, a concept comparable to the suspend
to swap employed by SEaMLESS. However, DreamServer
only works for HTTP and requires to write an application-
specific proxy for each other protocol. SEaMLESS, by design,



AWS Instances | Size (GB) |

% | # VMs [ #Idle VMs | Total Mem. (GB) [ Total Idle Mem. (GB) | Reduced VM (GB) | Memory Saving (GB)

tL.micro 061 | 11.8 | 5832 1765 3605.67 1081.95 0.501 81.52
cL.medium 170 | 94 | 4706 1412 8000.20 2400.40 0.474 1638.51
m1.small 170 | 224 | 11176 3353 18999.20 5700.10 0474 3890.89
c3.Jarge 375 | 3.5 | 1765 530 6618.75 1987.50 0.496 1690.15
m1.medium 375 | 106 | 5294 1583 19852.50 5955.00 0.496 5064.07
m3.medium 375 | 24| 1176 353 4410.00 1323.75 0.496 1125.70
cTxlarge 700 | 94 | 4706 1412 32942.00 9884.00 0515 9063.74
m large 750 | 176 | 8824 2647 66180.00 19852.50 0511 18326.90
ml xlarge 1500 | 82 | 4118 1235 61770.00 18525.00 0.527 17793.61
m2.xlarge 17.10 | 24 | 1176 353 20109.60 603630 0.560 5815.69
m2.2xlarge 3420 | 24 | 1176 353 40219.20 12072.60 0.598 1183833

[ Total [ [ [ 50000 | 15001 | 282707.12 | 84819.10 | [ 76329.12 |

TABLE II: Memory saving in a 50 000 VMs data center, each deploying a 67MB VNF.

supports every kind of application including protocols where
long-running connections are established.

In [2], the authors propose Picocenter to tackle the problem
of idle VMs. Picocenter introduces a proxy-based architecture,
where a hub orchestrates the entire cloud, deploying applica-
tions on the Data Center and updating the DNS databases. Af-
terwards, users can interact directly with the virtual instances,
without passing through the hub. In case the virtual instance
is idle, Picocenter uses a modified CRIU version to partially
dump the deployed application to a disk (local or remote)
and leaving untouched the memory pages used by the idle
application. If a memory page is needed, e.g. in case of user
activity or because Picocenter failed to detect all the memory
pages used by an idle application, the pages must be retrieved
from disk and loaded to RAM.

Although Picocenter is close to SEaMLESS, there are a
number of key differences. First, Picocenter does not work
with Virtual Machines, but with containers only. In contrast,
one of the requirement in SEaMLESS was to maintain the
presence of legacy VMs, which is often the virtual machine
unit in Data Centers, mostly for security reasons. Second, the
Picocenter hub represents a single point of failure. Hence,
any bug or problem at the Picocenter hub would introduce
a network outage. SEaMLESS avoids the introduction of a
complex single point failure, as the Sink Container can be
placed everywhere. SEaMLESS does not need to modify the
cloud manager and the failure of any SEaMLESS agent, in the
worst case, will not introduce more problems than a crashing
VM in the cloud would introduce.

Regarding our suspend to swap strategy to deallocate mem-
ory from an idle VM, some similar strategies can be found
in the literature. For instance, in [19] the authors propose
Oasis, which uses VM partial migration to transfer the active
memory only of an idle VM to a consolidation server. The
remaining memory of that idle VM is left on the RAM of the
original physical host. Hence, unavailable memory pages are
recovered from the original host on an on-demand basis. Note
that the pages retrieval introduced by Oasis will penalize the
QoE while the set of pages to provide a service is not fully
recovered. This is not the case of SEaMLESS where the entire
memory to process a user request is already available at the
Sink Container and at the VM once the latter is restored.

In [31], the basic memory to properly run a VM is estimated
to provide fast VM migration. To do so, the VM memory
size is constrained with cgroups, then swapped-in pages are
marked as hot pages and will build the minimum working set
memory of a VM. In this solution, the cgroups constraints
are conservatively tested, with probings periods of up to 30
seconds. SEaMLESS, however, provides a fast estimation of
the hot pages by enabling a dummy restore Gateway Process
procedure. [31] will also suffer from slow service restoration
if the required service hits several cold pages, which is not
the case of SEaMLESS where the idle VM and its original
memory environment is restored in case of user activity.

Migrating or relocating VMs requires the migration of all
the connections and processes that are using this VM. Several
solutions have been proposed to migrate connections. For
example, Snoeren et al. [32], introduce some TCP options in
order to enable migration capabilities. This solution requires
support on both, the client and the server sides. Another
solution is SockMi [33], which requires copying all the TCP/IP
stack states and data from one socket to another by using
the SockMid daemon implying, therefore, modifications on
user gateway processes. In contrast, SEaMLESS requires no
modification of the guest application.

SEaMLESS is orthogonal to solutions aiming to minimize
the virtualization’s overhead, for instance by integrating the
application (e.g., a web server) inside Unikernels [34] or
directly into containers. In this cases, no action is taken
against the idle process ecosystem surrounding the application
while in SEaMLESS only the communicating part, namely, the
Gateway Process is spared while the rest is removed from the
memory.

VII. CONCLUSION

One of the most popular solutions to optimize resource
usage in data centers is server consolidation, which aims at
minimizing the number of powered on physical servers to
run the required number of virtual servers. This approach is
rendered useless when a large portion of these virtual instances
are idle, leading to a situation where RAM is wasted to
maintain virtual kernels afloat, without doing any useful work.

For this reason, we proposed SEaMLESS, a service able
to (¢) convert a Gateway Process inside an idle VM into a
Virtual Network Function (VNF) running on a Sink Server,



(i7) deallocate memory from idle VMs, and (:¢7) quickly re-
store the VM when needed. Because the VNFs are lightweight
and resourceless, one single Sink Server can host hundreds of
Gateway Process VNFs, as opposed to only a few tens of
fully-fledged VMs on the same equipment.

At the same time, the Gateway Process VNFs provide a
sense of always-on availability. When SEaMLESS detects user
activity on one of the VNFs, the corresponding virtual machine
is resumed, and takes over the communication with the user,
leading to a seamless experience from the end user perspective.

Our experiments demonstrate that the SEaMLESS impact
on the Quality of Experience is limited. Indeed, SEaM-
LESS features a response delay of around 1 second for
Apache 2 with PHP, and around 0.5 seconds for OpenSSH;
both values including the VM resuming delay and any restor-
ing service procedure. More importantly, SEaMLESS offers
important memory savings, enabling massive server reconsol-
idation.

Finally, because of our architectural choices, SEaMLESS
can be integrated into standard Data Center managers, such as
OpenStack. This integration is the next step on our agenda,
along with the study of its interplay with the BtrPlace sched-
uler.
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